
TUD Department of VLSI-Design, Diagnostic and Architecture
Department Seminar - Wed.12.Jun.2013

Transputer Architecture

the Fascination of early, true Parallel Computing (198 3)

INF 1096 - 2:50pm-4:20pm
Speaker: Dipl.-Ing. Uwe Mielke

the Transputer & me …

• I‘ve graduated 1984 at TU Ilmenau,
• my Diploma thesis was about „the formal Petri-

Net description and programming of a real
time operating system kernel for embedded
applications “ @ Z80 (8bit CPU).

• Same time the Transputer appeared!
� ������� !! Realtime in Silicon !

• No wonder that I liked to read such papers all over the years…

• Since 2006 I‘m collecting Transputer infos & artefacts for their
revitalization � … Your questions? � uwe.mielke@infineon.com

� Target for next 60 Min.s: …give you an idea about the
impressive capabilities of the Transputer Architecture…

Agenda

Introduction
• INMOS & the IBM PC Era : some technical trends 198x, INMOS History

• Transputer Foundations : CSP & Occam, Persona

• The birth of the T414 : 1983

Transputer Architecture
• Hardware Details : CPU, Registers, Address Space, Links

• Instruction Set : Format, PFix & NFix, OpCodes

• Process Model : Queues, Events, Descheduling Points

Occam in Silicon
• Process Example : Buffer Process

• Transputer Execution : Input & Output Communication

Outlook
• (missing topics) : T9000, IEEE-1355, Occam-Pi, ST20, XMOS

1. Introduction

Supercomputer zum Anfassen …

… heute (seit 2004) im Heinz Nixdorf Computer
Museumsforum in Paderborn.

Das System hatte zwölf Jahre (1992-2004) im
PC2 (Paderborn Center for Parallel Computing)
bis zuletzt treue Dienste geleistet.
1992 stand der Parsytec-GC auf Platz 259 in
der Liste der Top500 Supercomputer.
Die Rechenleistung der 1024 Transputer à 30
MHz mit je 4,4 MFLOP/s, also insgesamt etwa
4,5 GFLOP/s, wird heutzutage von jedem
bessern Laptop erreicht -- der GC benötigte
dafür ein Gehäuse von 2,6 m Höhe und 2,53 m
Breite.

c‘t Nov.2004GigaCluster

1.1 the IBM PC Era
technical Trends ~ 198x

���� �����	
� ��� ���
���� ������ ���	
�
���� ���� ���	
�
���� � ���	
�
���� ���	
�
���� �� ��	
�
���� � ���	
�
���� ��� ���	
�
���� ��� ��	
�

���������	
�������������������������������������� �����

������
�	� ����!��!�����!����������������""������ ���������

�������##�$%&��' $��('�) *+(,-+,� �+.� -�/

���������0
����1�!���!��������������������""����� ���1������
��������!�2��!����3�+4�) 4+.� '.�/

������5()$64�1�����3�+4�) 7$(�'$� $8���	"9��!��:

INMOS Ltd.

1.2 Transputer Foundations
CSP & Occam

Communicating Sequential Processes (CSP) …

• was first described in a 1978 paper by C. A. R. Hoare. It evolved further in
parallel with the development of Occam at INMOS.

• The full theoretical version of the CSP calculus was initially presented from
in a 1984 article by Brookes, Hoare, and Roscoe, and later in Hoare's book
Communicating Sequential Processes, which was published in 1985.

OCCAM as Programming Language …

• was developed by David May at INMOS ~1980 together with the University
of Oxford (C.A.R. „Tony“ Hoare) in terms of formal and provable
correctness.

Example:
(Note: the behaviour of these two programs is identical … formal correct transformation is possible

and can be proven)

1.2 Transputer Foundations
Occam

Statements:

• A Process is a piece of code having an Input and providing an Output.

• Processes communicate by Point-to-Point Messages (1…n Bytes) via Channels.
• A Channel is an Address in Memory on the same … or another Transputer.

• A Channel between 2 Transputers is formed by a serial Link. The Link will
automatically drop („DMA“) the Message in the memory of the other Transputer.

• Communication will be synchronized, i.e. when sender AND receiver both are ready.
The Process which is ready for Communication first … has to wait for its partner.

• The programmer has not to take care about how Messages are transfered !

• Process execution on Transputers is Event-driven, i.e. Processes which are waiting
for an Event do not consume any processor time. Events can be caused by
Communication, Timer-Setup or extenal Interrupt(s).

• Occam provides all necessary primitives for Process Syncronization (incl. Start, End,
Alternative, …) and Process Communication.

• The programmer should focus on his Program Structure & Algorithms !

1.2 Transputer Foundations
Occam

• OCCAM enables a system to be described as a collection of concurrent processes,
which communicate with each other through channels.

• OCCAM programs are built from three primitive processes:
– x := exp assign expression exp to variable x
– ch1 ! exp output expression exp to channel ch1
– ch2 ? x input from channel ch2 to variable x

• The primitive processes are combined to form constructs:
– SEQ uential execute processes one after another
– PAR allel execute processes concurrently
– ALT ernative execute only the first ready process

• IF and WHILEand CASEconstructs are also provided.

• A construct is itself a process, and may be used as a component of another
construct.

(see Links for free download in Appendix)

1.2 Transputer Foundations
CSP & Occam

Communication via Channels in Occam …

• can be between 2 processes on the same transputer or between 2
processes on different transputers,

• looks for the programmer all like the same (fully transparent),

• is synchronized, i.e. if sender and receiver both are ready the
communication takes place.

Transputer

Process 1

Process 2 Process 1 Process 2
Link

TransputerTransputer

Channel

1.2 Transputer Foundations
Persona

„…what they all wanted was a new simplicity in computers , in their structure
and in the languages used to program them. In this conte xt simplicity need not
be the enemy of performance.“

[LR85] M.McLean and T.Rowland „The Challenge of the Transputer“,

Chapter 9 from „THE INMOS SAGA - A Triumph of National Enterprise?“, © 1985

Tony (C.A.R.) Hoare (born 11.Jan.1934)

Quicksort algorithm originator. Since
1977 Professor of Computer Science at
University of Oxford … today Fellow at
Microsoft

David May (born 24.Feb.1951)

Joined 1978 INMOS microcomputer
architecture team, since 1995 Prof.
of Computer Science at Bristol Uni,
2006 Co-Founder of XMOS, CTO.

Iann Barron (born in June 1936)

Developed several Mini Computers,
including the „Modulat-One“. Visioneer
and entrepreneur, initial founder of
INMOS and CEO.

William of Ockham (1287-1347):
"Entities should not be
multiplied unnecessarily.„
� keep it simple !

1.3 T414
Birthday 1983

Technology: 1.5µm CMOS
Clock (int.): 15…20MHz
Chip Size: 8.5 x 8.3mm²
Power Supply : +5V ±±±±5%
Packaging: CPGA 84
Production: 1985
Price (1886): ???

32bit Memory Interface

LINKS:

4xDMA 4xSerDes

CPU:

32bit
Registers

ALU
RAM:

4kByte

M
ic

ro
C

od
e

R
O

M

1982 : the „Simple-42“ design completed
1983 : successfully 1st prototyping of T414A
1984 : redesign T414B (2 bugfixes)
1985 : volume production

2. Transputer Architecture

D.May: „Occam and the Transputer are designed for each other. The
mathematical formalism of Occam provides the concurrency- and

communication-model for the Transputer‘s hardware“

2.1 Hardware
T800, T805

32bit Memory Interface

LINKS:

4xDMA 4xSerDes

CPU:

32bit
Registers

ALU

RAM:

4kByte

M
ic

ro
C

od
e

R
O

M
M

ic
ro

C
od

e
R

O
M

LINKS:

4xDMA 4xSerDes

FPU:
Mantissa ALU Exp.
64bit Registers ALU
normalizing Shifter

E
-M

ic
ro

C
od

e

M
-M

ic
ro

C
od

e

Technology: 1.5µm CMOS
Clock (int.): 20MHz
Chip Size: 8.5 x 10.7mm²
Power Supply : +5V ±±±±5%
Packaging: CPGA 84
Production: 1988
Price (Nov.1988): 1042,25 DM

2.1 Hardware
T805 Block Diagram

• 32bit CPU + 64bit FPU

• most instructions only 1 clock

• included: Process Scheduler
w/ internal Communication
Channels, Links and Timers.

• included: 4KByte SRAM, one
clock cycle access time,
register like quality.

• included: Memory Interface
(programable) for easy to use
RAS+CAS generation and
direct connection of 8…16
dRAM Devices, full 4GByte
Address Space.

• Event -Handler for fast,
deterministic Interrupt
response time: 950ns@20MHz

2.1 Hardware Details
CPU: Registers

The CPU contains:
• sequential 32bit Integer Processor
• (micro-coded) Scheduler & Timers
• Event Logic

Processor Registers:
• Evaluation Stack (RPN) : Areg , Breg , Creg
• Workspace Pointer: Wptr
• Instruction Pointer: Iptr
• Operand Register: Oreg
• Flags: Error, HaltOnError, BreakEnable
• Internal Registers: Dreg, Ereg, StatusReg

Scheduler and Timer Registers
• Front- and Back-Pointers of high and low priority

process queues: FptrX , BprtX
• Timer Counter (actual) and Timer Next Event

Registers for high and low priority process
queues: ClockRegX, TNextX.

• Timer Queue Pointers: TPtrLocX (* in Memory)

Ereg

Dreg

StatusReg

MSB LSB

Iptr

Wptr

Oreg

Fptr0

Bptr0

TNextR0

ClockReg0

TPtrLoc0 *

Fptr1

Bptr1

TNextR1

ClockReg1

TPtrLoc1 *

HaltOnErrorFlag

ErrorFlag

BreakEnableFlag

Processor Registers

Scheduler and Timer Registers

Areg

Breg

Creg

Areg

Reverse Polish Notation

DregWptr

2.2 Instruction Set
Format

Instruction Format:

• 8 bit Op-Codes – very compact !

• Reason: due to statistics … 70% of all
program code consist of load and store
instructions with almost small
operands.

• 4 bit Function Code = 16 instructions
• 4 bit Data Part … values #0…#F

• Function Code #F (operate) uses Data
as function as well � +15 instructions

• 2 Functions Codes (Pfix , NFix) are
used to extend Data Part w/ Oreg …

– up to 32bit (for function #0…#E) as
direct operand

– up to 8…12bit (for function #F) as
OpCode for further instructions

Function

7 … 4 3 … 0

Data

#F

7 … 4 3 … 0

OpCode

#2 Data

#6 Data

operate

pfix

nfix

2.2 Instruction Set
Overview

The T414 has 100 instructions which can be grouped as follows [LM92]:
• 16 addressing and memory access instructions
• 6 branching and program control
• 41 arithmetic and logical
• 12 process scheduling and control
• 16 inter-process communication
• 9 miscellaneous
Only 4 Addressing Modi:
• immediate … constant is part of instruction (ldc := load constant)
• register-direct … register-to-register (e.g. within evaluation stack, …)
• register-indirect … address in register (either Wptr or Areg)
• register-relative … address and displacement in registers (Wptr and Areg)
• There are two ways of addressing memory, namely to specify the address as a fixed

offset from the address in the workspace pointer (Wptr) or the A register.
The T805 has 167 instructions, additionally are:
• 50 FPU instructions
• Special instructions … like 2D move for graphics applications
• Test & Analyze Support (j#0)

2.1 Hardware Details
CPU: Wptr, Iptr, Oreg

Iptr

Wptr

Oreg

Program:

#7FFFFFFF

Registers are related to running Process

(process which is consuming CPU time)

Instruction Pointer: Iptr
• points to next instruction to be executed

Workspace Pointer: Wptr

• points to Workspace of running process

•• Wptr+0 Wptr+0 …… Wptr+xWptr+x for Program-Use

(very fast access to lower 16 words,

4kB SRAM w/ Register Quality!)

•• WptrWptr--1 1 ……WprtWprt--55 for Process-Use

• Operand Register: Oreg

• used to extend the size of Operands
(4bit …8…12…16…20…24…28…32bit)

• necessary to build more instruction
codes by use of Prefixes

Locals:

index3
address2

variable1

IPOINT
NEXTP

BUFADDR

TIME

#80000000

+3
+2
+1
+0
-1
-2
-3
-4
-5

2.1 Hardware Details
CPU: Address Space

Address Space:
• highest: MostPos (most positive Integer)
• lowest: MostNeg (most negative Integer)
• totally little Endian Bit, Byte and Word Order
• single Byte Write is possible (Byte-Selector)
• Read always 32bit Word-wise (aligned)
• internal RAM at lowest Addresses

Reserved Locations:
• Channel Control Words for Link 0-3
• Channel Control Word for Event channel
• Pointers to begin of high and low priority

Timer queues: TPtrLocX
• Interrupt Save Location for (low Priority)

processor status, in case of a high priority
process is interrupting a low priority process.

• Reserved for extended Functions means:
this area will be temporarily used by the
processor during execution of 2D block move
instructions, i.e. do not modify!

Machine Map Byte address Word Occam Map
offset

Reset Instr. #7FFFFFFE
#7FFFFFF8
#7FFFFF6C

#00000000

#80001000 Start of ext.Memory #0400

#80000070 MemStart (int.RAM) #1C
Reserved #8000006C

for
extended functions #80000048
ERegIntSaveLoc #80000044

STATUSIntSaveLoc #80000040
CRegIntSaveLoc #8000003C
BRegIntSaveLoc #80000038
ARegIntSaveLoc #80000034
IptrIntSaveLoc #80000030

WdescIntSaveLoc #8000002C
TPtrLoc1 #80000028
TPtrLoc0 #80000024

Event #80000020 #08 Event
Link 3 Input #8000001C #07 Link 3 Input
Link 2 Input #80000018 #06 Link 2 Input
Link 1 Input #80000014 #05 Link 1 Input
Link 0 Input #80000010 #04 Link 0 Input

Link 3 Output #8000000C #03 Link 3 Output
Link 2 Output #80000008 #02 Link 2 Output
Link 1 Output #80000004 #01 Link 1 Output
Link 0 Output #80000000 (Base of memory) #00 Link 0 Output

Link 3 Out

2.1 Hardware Details
Links: Registers

Transputers can be connected by their Links.

Each serial Link has an Input & an Output channel:
• Channel : channel control word � reserved

location in memory (contains either Wdesc of
related Process or „not.process“)

• CountReg : no. of bytes to transfer / receive
• PtrReg : Source Address of data for output /

Destination Address for data to input
• DBuffReg: 32bit Data (4 Byte) buffer
• Shift-Register (8bit): bytewise load, bitwise

shift out / in of data

PtrReg

CountReg

DBuffReg

Channel *

Shift-Register

Link 3 In

PtrReg

CountReg

DBuffReg

Channel *

Shift-Register

#7FFFFFFF

TPtrLoc1
TPtrLoc0

Event
Link 3 In
Link 2 In
Link 1 In
Link 0 In

Link 3 Out
Link 2 Out
Link 1 Out
Link 0 Out

#02
#01
#00

Memory:

2nd
Transputer

2.1 Hardware Details
Links: Protocol

Each communication channel requires that all 4 input and output lines of the
respective Links are connected.

Simple Link Protocol:

• 2 Start-Bits
• 8 Data-Bits

• 1 Stop-Bit

Each transfered Byte has to be confirmed by:
• 2 Acknowledge-Bits

2.3 Process Model
State Transitions (simplyfied)

At any time, a concurrent process may be

active

• being executed (running)
• on a list awaiting execution

inactive

• ready to input
• ready to output

• waiting until a specified time

(active)
running

(active)
sleeping

(inactive) waiting for time
or reday to input or output

2.3 Process Model
Wptr & Workspace Descriptor

• Wptr: Workspace-Adress

• Wptr � lowest 2 bits always Zero !

• Wdesc: Workspace Descriptor
• Wdesc = Wptr + LSB for Process for Priority

used as „Idendity-Card“ of process … in case
process is waiting for an event (e.g. in Channel
Control Word), tells the CPU which priority the
process in the channel contol word has to run

Note: Wptr of actual running process is stored in
CPU and

process priority is known to CPU-Status

Locals:

IPOINT
NEXTP

#80000000

+3
+2
+1
+0
-1
-2
-3
-4
-5 Wptr

MSB LSB

#A #1#A #5#A #5#A #5

7 … 4 3 2 1 031 … 28 27 … 24

2.3 Process Model
Wptr & Process Status

• Process Status (Wdesc) is needed for pre-
emptive Multitasking:

Wptr (+Prio) is Id-card of process !

In case a Process becomes descheduled …
the Locations below Wptr are used as follows:

• -1 IPOINT: points to next instruction of a
descheduled Process, i.e. form here the
process can be continued

• -2 NEXTP: points to Wptr of next Process, if in
lo/hi Prio Process Queue (active-waiting)

• -3 BUFADDR: used during channel
communication, points to data to be transferred

• -4 TLINK: points to Wptr of next Process, if in
lo/hi Prio Timer Queue (-or- … TALT Flag)

• -5 TIME: time value the process is waiting for,
if in lo/hi Prio Timer Queue

Locals:

index3
address2

variable1

IPOINT
NEXTP

BUFADDR
TLINK
TIME

#80000000

+3
+2
+1
+0
-1
-2
-3
-4
-5

Wptr

Channel *

2.3 Process Model
Process Queues

• 2 Process Queues : one for high
priority and one for low priority
processes

• Queues are organized as linked
List‘s, Fptr is pointing to top of
queue and Bptr to bottom of
queue, i.e.:

• Fptr contains Wdesc of next
process to become scheduled

• Bptr contains Wdesc of last
process which has been
descheduled

• The linked list is organized via
Wptr-2 of each process in queue

2.3 Process Model
Timer Queues

• 2 Timer Queues : one for high priority and one
for low priority processes, organized as linked
List‘s, TPtrLoc is containing the Wdesc of the
process, which is next to be waked up

High priority Timer:

• one increment (tick) every 1 µSec

Low priority Timer:
• one increment (tick) every 64 µSec

• If a low prio process exceeds his general time
slot of 1 Millisecond it will be descheduled
during next timeslot

Timer Registers Definitions:

• ClkReg +1 < Future < ClkReg + MostPos

• ClkReg > Past > ClkReg + MostNeg

• can be RESET or read … but not written

Workspace
Process X

TPtrLoc1 +0
-1
-2
-3
-4
-5 300

Workspace
Process Y

+0
-1
-2
-3
-4
-5 1000

MostNeg #80000000

2.3 Process Model
Descheduling Points

• in general all instructions run as „Atomic Operation“, i.e. only at dedicated
instructions (j, lend, in, out, outb, outw, altwt, taltw, tin), so called
Descheduling Points, the scheduler can put a low prio process to sleep,
e.g. if the process has exceeded his 1ms time slot.

• The (Occam-) Compiler has to avoid endless atomic operations, i.e. if there
are no loops at all … then from time to time there may be a NOP-like
descheduling operation (j0) included

• Note: in case of Descheduling the registers and process Status will not be
saved … only Iptr! Above Descheduling instructions ensure, that the
evaluation stack is empty, all process owned variables and results have be
saved in workspace already. Therefore process switching time is incredible
fast.

• A high prio process (e.g. ext. Event) allways can interrupt any running low
prio process. A reserved SRAM area will be used to store all registers & the
processor status. Interrupt response time is 19-58 clocks (due to the current
running instructions has to be completed first!), i.e. 0.95-2.9µs @20MHz.

2.3 Process Model
Events & Descheduling Points

For the Transputer everything of the following is an Event:

• Timer Counter has reached a preset value

• Input communication request
• Output communication request

• external Event requires Interrupt

Channels are telling the system which process is related to which event.

� So events can be handled completely by Hardware & Microcode, i.e. they
are full transparent to the user.

2.4 System Services -in Arbeit-
Reset, Analyze, Boot

• No dedicated in-circuit Emulator required / avaliable at that time

• No MENTOR FastScan avail (intro 199x)

• The Analyze -Pin was used for Software Debugging, therefore exist …

2 Kinds of Reset:

1.) Reset w/o Analyze = normal PwrUp … internal Status is „virgin“
2.) Reset w/ Analyze = Debug-Mode … internal Status is preserved,

communication is still completing, Processor halted awaiting Boot over Link

2.4 System Services -in Arbeit-
Boot over Link

• Microcoded „Boot over Link “ Procedure:

1st Byte = #0 � poke Operation: read next 8 Byte as address + data to write

1st Byte = #1 � peek Operation: read next 4 Byte as address, output data
1st Byte > #2 � boot Operation: 1st Byte = number bytes (<256) to receive

...write these Bytes @MemStart into internal memory and

…Start this as program (e.g. Bootloader for larger Programs)

• i.e. consequently this can be used:
… either for Booting a whole big big system over a Worm …

…or Software debug after Analyze+Reset to read/modify processor status

• Example: ispy protocol of a 4 Transputer System incl. Memory & Linkspeed

Using 150 ispy 3.23 | mtest 3.22
Part rate Link# [Link0 Link1 Link2 Link3] RAM,cycle
0 T800d-25 288k 0 [HOST 1:0] 4K,1 1024K,3;
1 T425c-20 1.6M 0 [0:3 2:0 3:0 ...] 4K,1 4092K,3.
2 T400c-20 1.7M 0 [1:1] 2K,1 1022K,3.
3 T400c-20 1.8M 0 [1:2] 2K,1 4094K,3.

3. Occam

„Barron, Hoare and May went 1980 to a hotel for a week-long brainstorming
session and returned with the specification for the new language.“

„Occam was just as revolutionary as any other aspect of the transputer. It
was intended not just as a programming language but also as a means of
describing the structure of a computing system.“

[LR85] M.McLean and T.Rowland „The Challenge of the Transputer“,
Chapter 9 from „THE INMOS SAGA - A Triumph of National Enterprise?“, © 1985

3. Occam as Assembly Language
Input & Output Example

• A very simple example of an occam program is the buffer process:.
WHILE TRUE

VAR ch:
SEQ

in ? ch

out ! ch

• Note: No Brackets! Indentation is used to indicate the program structure!
• The buffer consists of an endless loop, first setting the variable ch to a

value from the channel in , and then outputting the value of ch to the
channel out . The variable ch is declared by VAR ch .

• The direct correspondence between the program text and the pictorial
representation is a useful starting point in the design of an efficiently
implementable concurrent algorithm.

3. Occam as Assembly Language
internal Channel Comm 1/4

• A Channel is a word in memory
= Channel Control Word

• The channel can be marked as
unused (empty) by a descriptor
„no.process“ = #80000000

� a channel is a semaphore

1. Begin of a Communication
• For input or output operation

the CPU registers are:
• Areg : message length in Byte
• Breg : Channel Address
• Creg: Pointer to Databuffer

• Example: Lets consider the 1st
Process is ready for Output

1st Proc Wptr

#7FFFFFFF

NO.PROCESS

Areg

Breg

Creg

Areg

index3
address2

variable1

BUFADDR

#80000000

+3
+2
+1
+0
-1
-2
-3

Message

Channel *

3. Occam as Assembly Language
internal Channel Comm 2/4

• If the Channel is empty, i.e.
„no.process“ = #80000000,
then the 1st (Output) Process
„knows“ he has to wait for the
2nd (Input) Process to become
ready for communication

2. Initialization of Communication
• 1st (Output) Process CPU

registers will be written to:
• Areg : message length in Byte

… will got lost � (i.e. 2nd
(Input) Process will determine
no. of Bytes later … if not
matching … then its
programmers fault)

• Breg : Channel Address, � 1st
(Output) Process will write his
Wdesc into the Channel

• Creg: Pointer to Databuffer �
will be written to own Wptr-3

• The 1st (Output) Process will
now be descheduled … w/o
queing into waiting list!

1st Proc Wptr

#7FFFFFFF

WDESC1ST

Areg

Breg

Creg

Areg

index3
address2

variable1

BUFADDR

#80000000

+3
+2
+1
+0
-1
-2
-3

Message

Channel *

3. Occam as Assembly Language
internal Channel Comm 3/4

• If the 2nd (Input) Process
becomes ready for
communication … he will read
the channel and detect his
partner process is already
waiting for communication

3. Execution of Communication
• 2nd (Input) Process is reading

Wdesc = Wptr of 1st (Output)
Process to find its data pointer
@ Wptr-3 to read message…

• CPU registers of 2nd process:
• Areg : message length in Byte

… will determine no. of Bytes
now � for data transfer

• Breg : Channel Address,
• Creg: Pointer to own

Databuffer � here data will be
written to now!

2nd Proc Wptr

#7FFFFFFF

WDESC1ST

Areg

Breg

Creg

Areg

index3
address2

variable1

#80000000

+3
+2
+1
+0
-1
-2
-3

Message

Channel *

3. Occam as Assembly Language
internal Channel Comm 4/4

• The 2nd (Input) Process will
transfer data from 1st (Output)
workspace into his workspace

4. Finish of Communication
• CPU registers of 2nd process:
• Areg : message length in Byte

… will determine no. of Bytes
now � for data transfer

• Breg : Channel Address,
• Creg: Pointer to own

Databuffer � here data will be
written to !

After all data have been copied:
• The Wdesc of 1st (Output)

process will be added to the list
of waiting processes (� Bptr)

• channel will be set back to
empty � no.process =
#80000000

• The 2nd (Input) process has
finished communication and
can continue w/ next instruction

2nd Proc Wptr

#7FFFFFFF

NO.PROCESS

Areg

Breg

Creg

Areg

index3
address2

variable1

#80000000

+3
+2
+1
+0
-1
-2
-3

Message

Channel *

3. Occam as Assembly Language
internal Channel Comm …

• Example was about Output Process arrives first.

• What will happen if Input Process arrives first ?

???

• Answer: the same procedure!

• in this case the 2nd (Output) Process has to do the copy job …

• i.e. always the „last“ process of both communication partners determines
the number of bytes to be transfered.

3. Occam as Assembly Language
external Channel Comm

• (Link-)Channel is in reserved Memory area … process which arrives 1st has to wait
• Protocol: each received Byte will be acknowledged, but only if receiving process is ready!
• Sender can always send one (1st) Byte … but w/o acknowledge after … he has to wait!

Link 1 Out

PtrReg

CountReg

DBuffReg

Channel *

Shift-Register

Link 2 In

PtrReg

CountReg

DBuffReg

Channel *

Shift-Register

#7FFFFFFF

TPtrLoc1
TPtrLoc0

Event
Link 3 In
Link 2 In
Link 1 In
Link 0 In

Link 3 Out
Link 2 Out
Link 1 Out
Link 0 Out

#02
#01
#00

Memory:

2nd
Transputer

#7FFFFFFF

TPtrLoc1
TPtrLoc0

Event
Link 3 In
Link 2 In
Link 1 In
Link 0 In

Link 3 Out
Link 2 Out
Link 1 Out
Link 0 Out

#02
#01
#00

Acknowledge
(can be send overlapped to data on channel)

1st
Transputer

Link 1 In Shift-Register Link 2 Out Shift-Register

Data

ACKACK

Memory:

Communication Handshake

3. Occam as Assembly Language
further Constructs …

Further available Occam Constructs in Microcode are:
• PAR
• ALT
� These Constructs are more complicated, due to additional necessary

counters for all inclued processes. Furthermore constructs with Timer
contribution have to be considered different.

� Therefore … pls see literature for detailed descriptions.

End of Presentation.

4. Outlook

„An interesting observation was made that the programmer s with a
background in �	
��	
 design fared better with the design of these
highly parallel systems than did those with a traditional computer
science background.“ the Legacy of the Transputer © 1999

4. Outlook
Discussion … missing Features

The Transputer is excellent for embedded (trusted) applications

General purpose use is handicaped by …

• No MMU (memory protection between different applications on same chip
impossible - but chip to chip 100% true)

• No more (finer grain) than two Priority Levels

• Virtual Channels (only in Software) to allow processor-independent process
placement & move (as well to speed up serial communication)

Some of this lacks have been overcome by the T9000 + C104 design.
• Unfortunately the T9000 ooO-design-issues could not be solved in time

• The complicated T9000 chip never became productive � with ist 10MHz

• Nevertheless a couple of MIMD machines (64 x T9000) have been built
(CERN, University of Kent) and are still running … �

4. Outlook
open topics…

Open Topics … which could not be covered in this presentation:
• Transputer Chip Family, Peripherals, C004: 32 Channel Link Switch
• Transputer modular Industry Standards: Boards & TRAMs
• Transputer Development Systems
• further Programing Languages
• Operating Systems
• Transputer Main Applications+Markets (AddOn Boards, embedded, MIMD)
• 2nd Generation Transputers + Routers:

– T9000, C104, the IEEE-1355 Spacewire Standard, IEEE-1394
– ST20450 (1995), ST20 embedded CPU (200+MHz) up today

• 3rd Generation Occam / CSP Languages
– Occam-Pi, Handel-C … HDLs for FPGA synthesis
– KrOC – Kent retargetable Occam Compiler

• Transputer Emulator
• Today‘s Transputers: www.xmos.com

Literature, Sources, Links

���������	
���
;
+�����<�$��=����$$� > ?� *�,+�@�$8�'?� �+(4�-'��A B ?''��00666�6$'-,�$�,0�+���40�C.�@�$$�D5����)8
; �$$���<*���=�����*�+(+()� ��$63+() > ?� �?+33�(,� $8� '?� �+(4�-'��A���?+�'�� ��8�$. > �E��F�9����G��	 �� �- .�?�$8�F+'$(+3�E('����4�HA��8���)$6(3$+)��

?''��00666�'�+(4�-'���(�'08%$$�404+,+04+,+��)8
; �('��C�6���+((�+��$(��>�(.$4 +()�'?� �+(4�-'��A��
 +�'��2���� ?''��00666��4�.+(�+��-�0���0��40��41��?'.I� 2�?''��00666��4�.+(�+��-�0���0��40��411�?'.I�
; <G����=���G�-%.J33��������33����K���?-3'�(��>�-����� �?(���B �(����+@�8J��L�)��.+((A��.�����������	�!��� �?''��00666�.�%���.�,�)�0��!11�0�+���D.�D������)8
; <���!=�����3�3���> �+(4�-'���)+4�C���+(('��G�(�A ����9�
� E�
��M������L-3����!��

?''��00666��.%�))�'0)$6(3$+)40 �+(4�-'��N��	N��)+4 N��C���+(('�N��G�(�N��L-3N�����!��)8
; <5+�1=�
+-3�5+3����>'?� 9�,(4 $8���+��5��A�����1�� �?''��00666��3(�4��$�-�0%%3$,�+�?@09�,(4	$8	��+��5��	�*(�4	E��	��5	�$(8���(��	���1��)8

����������	��
; 5���)+� ?''��00�(�6���)+�$�,06�0 �+(4�-'��
; "$�-.�('+'$(�� 666�'�+(�-'���(�' 75�%4'��$8���?+�3���J4'3�:�� �F�9��"+'+4?��'4 2� ��?(�+3 F$'�4�
; �%$-'�
+�+33�3��?''��00666��3+44��.��$�,0'�+(4�-'��07�+. ���(+�4?4-()+�+.O4 �+(4�-'����$.��
+,�:� � �$+�)4���+�)6+�����$8'6+��
; �('�$��<�'��=���5��'��C�(4 7�F�9�:��>'?� '�+(4�-'��A �EEE������
; �('�$��<�$��=� ��$)��>
+�+33�3�
�$��44(, -4(, �+ (4�-'��4A��?''��00'��(�C+(+��$.0)$�-.�('40 �+(4�-'��4��)8
; ��C�6��<*���=�L�)�*��-6����)���4�P �+(4�-'��4)�4 ,(�+()�-4��+4�+�%-3)(,�%3$��P?''��00666�4��(���-C+�(30Q.�40�4)$�40'�+(4�-'��4��4�,�NE�N��N�E
; �$$���<����=�����(������L���?��(����> �+(4�-'��	 *�'8+)�(�B E(��E(8J?�-(,�-()�-.8+44�()����4�?��% -(,A�����+(4�� �J(�?�(����������F	1	��!	�!�!1	�
; �$$���<E%�1=���(��E%��'��> �+(4�-'���-()�9��+.��"+ 4��+()%-�?�8J���@4'�.�('6��3��A ��4�����1�����F	1	 �����	����
; �$$���L$?(��$%��'4� > �+(4�-'�� �44�.%3@�
�$,�+..(, P �����'�+(4%$$������F	����	���	�����	���8����)$6(3$ +)��?''��00666�'�+(4�-'���(�'04�'0�)80'�+(4%$$���)8
; �$.��+,��$8� �+(4�-'��	���?'��'�"+C)��+@�� ?''��00666��4�%�4�+��-�0Q)+C�0()�R�?'.3
; �$$���F�'6$��4���$-'��4 +()� �+(4�-'��4�� ?''��006$'-,�-���+��-�0)$�40(�+'0%$$���4��'+�8���)$6(3$+)�7
$4'4���'	S$�.+':
; ?� �+(4'�����'��
�$&��'�� ?''��00666�'�+(4'�����'���$�,0 �+(4�-'��
; �+(4�-'��	E.-3+'$��� ?''�4�004'�4�,$$,3���$.04'�0'�+(4�-'���.-3+'$�0

���������
; �$$���<�$��=��������$+�� >�$..-(�+'(, ��T-�('+3
� $��44�4A����&-(���������F	��	1�	�1���	���8���)$6(3$ +)��?''��00666�-4(,�4���$.
; �$$�3�'��<�@��=�"����@)���>�('�$)-�'$(�'$�'?��
�$,�+..(,�*+(,-+,��9��+.P��8���)$6(3$+)�� ?''��00666��,�%-��(�33��)-0Q�41!!0$��+.��)8
; �$$���<
��!=�"�
$-('+(��"��+@��>�� -'$�+3 �('�$)- �'$('$�9��+.
�$,�+..(,A���+�G�+6	�33 F�6U$�� ���!��� ��F	�	!1�	�����	M
; �$$���<
���=�"�
$('+(�����-)$3�?��>9��+.)+4��+() %-�?�B �(3�'-(,��-.�
�$,�+..���(��+�+33�3������?(� �4@4'�.�A����4�����������F	1	�����	���	1
; �$8'6+����K�9� B '?� K�('���'+',�'+%3� 9��+. �$.�3���� ?''��00666��4���('�+��-�0��$&��'40$8+0��$�0
; 5$ �G	���?C��� ?''��00666�6$'-,�$�,0�+�+33�30	 5$�3)� �+(4�-'����4���G�$-���
�$���)(,4 2�
+���4

Literature, Sources, Links

��� ��
����� �����
�� �������
;
+�����<�55��=����$�%%��4��
�5�3�?��K�5&%�+(4��>� �,�(��+3��) SS �+3,$�'?. $(�'�+(4�-'��4A�� ?''��00�'�4���R�4'��4-��)-0C�6)$�04-..+�@H)$V��������������
;
+����� $6+�)4 �$(�-���(�@ 	 $��+.� $(�*EG9��()4'$�. ?''��00666��4���('�+��-�0�-%40����0����0�$('�('��)8
;
+������$,������3�@��A ?� ���3�+'$($8�'?� ����� � +(4�-'���+'��E�FA 7����:�� ?''��00�'�4���R�4'��4-��)-0C�6)$�04-..+�@H)$V�������������!
; �('��C�6��<
+��=��+(�
+,���>�$8'6+���'$��3�$(�6 '? �+()�3�A��?''�4�00666�)$����+��-�0Q630'�+�?3$�+30+��?�0+(�('��)8
; �(($-(��.�('��<G-��=�G-3)8$�)�7�(C��4'@�$8��-��� @:��AS$�.+3�W��8�+'$(�$8�+(�9��+.	'$	S
G���$.�3���+()�'4�G�(��+'�)�*$,�����-'4P��

?''��00666�4-���@�+��-�0�$.�-'(,0(�640�C�('40����08$�.+3DC��8�+'$(D$8D+(D$��+.'$8�,+D�$.�3��D+()D'4D,�(��+'�)D3$,�D���-'4�?'.
; ?� S����*-(�?��4 9C������S-()+.�('+3� -�(� $6+�) �$(� -���(�@ (��$8'6+���?''��00666�,$'6��+0�-%3�+'$(40�$(�-���(�@))&�?'.
; ?� *+()4�+���$8�
+�+33�3��$.�-'(, ��4�+��?����W�6 S�$. �����3�@� ?''��00C�6����4�%����3�@��)-06�0�+(D
+,�

������������
 D� 666��+'�(',�(-4��$.
; ��	
+'	��1�1�����('��8+���%�'6��(�+��$.�-'���%-4�+ ()�+�4��+3��+���'�3(��	 ���+�����
; ��	
+'	������������$�$.�-'�� 	 �F�9����L-3����
; ��	
+'	���1�1����$.�-'���6'?�C+�+%3��3�(,'?���$� �44��$..-(�+'$(�	 �F�9����F$C����
; ��	
+'	����������$..-(�+'$(('��8+�� 	 �F�9�����+�� ���
; ��	
+'	������!�����$�$.�-'���6'?���$�'@�4�?�)- 3(,�	 �F�9����"������
; ��	
+'	����������$..-(�+'$(('��8+�� 	 �F�9�����+�� ���
; ��	
+'	������������$�$.�-'����	 �F�9�����������
; ��	
+'	���������",'+3�4,(+3�46'�?�	 �F�9����"��� ���
; ��	
+'	��!�1�!�����$�$.�-'���%-3)(,�%3$��D1�9�'� ���
; ��	
+'	�����11���@4'�.�8$���R��-'(,�'.��)���()�('���$��44�4�	 �F�9����L+(����
; ��	
+'	��1���������$�$.�-'���6'?�����(�4��+�+'� �4$3+'$(�6�33�	 �F�9����L-3����

��	�	� � ��	�����

; 9�,(+3��?��
�'-���$8� ����B 8�$. ?''��00666��?3'$(�$.�-'(,�$�,�-�
; 9�,(+3��?��
�'-���$8� ����B 8�$. 666�'�+(�-'���(�' �
�'-��4�7'?+(�4 '$���?+�3���J4'3�:

�	
�
; 9��?+.X4 �+�$��� ?''��00666�4�+(�+�(�33��$.0�@���$(N���+('$405�%N��
+,�409��+.N��4N���+�$��?'.
; �F�9���4'$�@ 2���'-��4�� ?''��00666�(.$4��$.0
; ?$.� $8���+3�.�(O4 ?+�)6+����?''��00666�,���)$'��$.0
; �+(4�-'��4��+(%� 8-(�� ?''��00666�.�?+�3��$�,0'�+(4�-'��
; �4�@ 2��'�4'��?''��00666�6��@��$.06��@0'�+(4�-'���?'.3

Appendix

Tech-Node / Clock

2.5-1.5µm / 10-20MHz 1.5-1.0µm / 20-30Mhz

����

1.0-0.8µm / 30-60Mhz 0.8-0.5µm / …133Mhz

http://www.computerhistory.org/microprocessors/

Dominant Processors

Personal-Computer:
• 16bit: Intel 8086+8087, 286+287,

386SX
• 32bit: 386DX+387

• 32bit: Motorola 68020+68881

Embedded Market:

• 8bit: i8048, Z80, M680x

• 16bit: 68000

Minicomputers & Workstations:

• 32bit: Micro-Vax

Super-Computing:
• 32/64bit: CRAY-1 (1983)

Vector Processor

����

http://www.computerhistory.org/microprocessors/

����
ST20450

0.8-0.5µm / …133Mhz1.0-0.8µm / 30-60Mhz

1.5-1.0µm / 20-30Mhz
Tech-Node / Clock

2.5-1.5µm / 10-20MHz

Dominant Processors

Personal-Computer:
• 32bit: 386DX+387, 486SX, 486DX

• 32bit: Motorola 68030+68040

Embedded Market:

• 8bit: i8049, Z180, M680x

• 16bit: 68000
• 32bit: (i960), T805

Minicomputers & Workstations:
• 32bit: i860, SUN-Sparc, MIPS

• 64bit: DEC-Alpha

Super-Computing:
• 32/64bit: CRAY X-MP (1989)

Vector Processor

2.2 Instruction Set
Opr Register during pfix # (1Clk)

#2

7 … 4 3 … 0

#1pfix #1

#0 #1#0 #0#0 #0#0 #0

7 … 4 3 … 031 … 28 27 … 24

#1 #0#0 #0#0 #0#0 #0

load Oreg

shift Oreg

#1 #A#0 #0#0 #0#0 #0

7 … 4 3 … 031 … 28 27 … 24

#A #0#0 #1#0 #0#0 #0

load Oreg

shift Oreg

#2 #Apfix #A

#A #5#0 #1#0 #0#0 #0

7 … 4 3 … 031 … 28 27 … 24

#A #5#0 #1#0 #0#0 #0

load Oreg

load Areg

#4 #5ldc #5

2.2 Instruction Set
Opr Register during nfix # (1Clk)

#2

7 … 4 3 … 0

#Anfix #A

#0 #A#0 #0#0 #0#0 #0

7 … 4 3 … 031 … 28 27 … 24

#F #5#F #F#F #F#F #F

load Oreg

negate Oreg

#5 #0#F #F#F #F#F #Fshift Oreg

#5 #D#F #F#F #F#F #F

7 … 4 3 … 031 … 28 27 … 24

#5 #D#F #F#F #F#F #F

load Oreg

load Areg

#4 #Dldc #D

2.2 Instruction Set
1st OpCode Table

one Byte Operation Codes: �� 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
n *

 7 6 5 4 3 2 1 0

or one Byte Instruction

0 1 2 3 4 5 6 7 8 9 A B C D E F
1st

Nibble
Operation Cycles FctCode

2nd
Nibble

Operation Cycles OpCode

0 j address relative to Iptr 0 jump 3 0 0 reverse 1 00

1 ldlp offset relative to Wptr 1 load local pointer 1 1 1 load byte 5 01

2 pfix operand 2 prefix 1 2 2 byte subscript 1 02

3 ldnl offset relative to Areg 3 load non-local 2 3 3 end process 13 03

4 ldc operand 4 load constant 1 4 4 difference 1 04

5 ldnlp offset relative to Areg 5 load non-local pointer 1 5 5 addition 1 05

6 nfix operand 6 negative prefix 1 6 6 general call 4 06

7 ldl offset relative to Wptr 7 load local 2 7 7 input message 2w+19 07

8 adc operand 8 add constant 1 8 8 product b+4 08

9 call address relative to Iptr 9 call 7 9 9 greater than 2 09

A cj address relative to Iptr A
cond. jump (not taken)

cond. jump (taken)
2
4

A A word subscript 2 0A

B ajw operand B adjust workspace 1 B B output message 2w+19 0B

C eqc operand C equals constant 2 C C subtraction 1 0C

D stl offset relative to Wptr D store local 1 D D start process 12 0D

E stnl offset relative to Areg E store non-local 2 E E output byte 23 0E

F opr rev lb bsub endp diff add gcall in prod gt wsub out sub start p
out
byte

out
word

F operate F F output word 23 0F

���� Data Opr 1st Nib. Data

� � � �

��
	� Opr 2nd Nib.

� �

2nd Nibble

1s
t N

ib
bl

e

2.2 Instruction Set
5th OpCode Table … example

two Byte Operation Codes: �� 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7 8 9 A B C D E F
1st

Nibble
Operation clk

1s
t.N

.

F opr shr shl mint alt altwt altend and enbt enbc enbs move or csn gl ccnt1 talt ldiff F operate

2nd
Nibble

Operation Cycles OpCode

0 shift right 1 40
1 shift left 1 41
2 minimum integer 1 42
3 alt start 2 43

4 alt wait (channel not ready) 17* 44

5 alt end 4 45
6 and 1 46
7 enalbe timer 8 47
8 enable channel (ready) 7* 48
9 enable skip 3 49
A move message 2w+8 4A
B or 1 4B
C check single 3 4C
D check counter from 1 3 4D
E timer alt start 4 4E
F long diff 3 4F

2nd Nibble

� � � �

������ � ��
	� Opr 2nd Nib.

OpCode Tables:
• one table for one Byte OpCodes

• 11 tables for 2 Byte OpCodes (#1x…#Bx)

• one table for 3 Byte OpCodes (#17x)

All togeter = 151 direct instructions

+16 indirect instructions (FPU only)

2.1 Hardware Details
CPU: Data-Paths

• 4 Phase Clock � 1 Clock Execution

• Data Path controlled by horizontal
Microcode (~80 bit wide)

• X- and Y-Bus for operand transfer
• Z-Bus for result transfer and data

exchange with Link Channel DMA‘s or
reading the actual Timer value

• U-Bus to control (arbiter) the Z-Bus,
i.e. either processor or DMA‘s can be
master!

• RISC instructions, e.g. almost all ALU
operations

• CISC instructions, e.g. all Scheduler
Operations, 2D Blok Move, …

For more HW details … see Patent List in Appendix.

2.1 Hardware Details
FPU

full IEEE-754 compatible single and double precision (64bit) FPU w/ 50
instructions

• All Arithmetic operations have been formally verified and proven
• Full parallel FP operation to integer CPU (e.g. address calculations)
• Note: no big hardware multiplier! But Silicon area vs speed optimized
• For 64bit: fmul 27 clocks, fdiv 43 clocks � ca. 1.5 MFLOPs @ 20MHz
For more internal details about FPU pls see [72-TCH-047-00]
“The role of occam in the design of the IMS T800”, INMOS technical Notes, Sep88.

2.1 Hardware Details
Links: Data-Paths

Each Link has separate input logic and output logic, combined with own DMA.
Therewith Link operation can be fully overlapped w/ CPU operation.
• U-Bus : Data-Bus and Address-Bus Arbitration (Link DMA vs CPU)
• V-Bus , W-Bus : provides Source (input) or Destination (output) Address

from PtrReg via DataAddrReg (CPU) to Address-Bus
• Z-Bus : connects Link DBufReg via ChannelDataReg (CPU) to Data-Bus

(a) Link Transfer Rate nominal is 20Mbps (1,2MByte/s) for short distance
direct Transputer to Transputer connection.
In case of more than 30cm distance Fast-TTL buffering is recommended.

(b) For long distance connection (>20m up 1km) matching RS422 is used.
In case of larger distances the use of fiber optics is recommended.

2.4 System Services
onChip RAM + Mem-IF

• full programmable memory timing
from 3 to 6 T cycles (each 50ns) for
dRAM access times from 50…150ns

• direct RAS / CAS signals

• Refresh control register in CPU

• for small outline TRAM design

• only few additional circuits needed:

4. Outlook
Transputer Target Applications

• Scientific and mathematical applications

• High speed multi processor systems

• High performance graphics processing

• Supercomputers
• Workstations and workstation clusters

• Digital signal processing

• Accelerator processors
• Distributed databases

• System simulation

• Telecommunications

• Robotics
• Fault tolerant systems

• Image processing

• Pattern recognition
• Artificial intelligence

4. Outlook
other Programming Languages

• Ada

• C

• C++
• Fortran

• Forth

• Java

4. Outlook
Transputer OS

• CHORUS (UNIX) System V

• Helios (UNIX), distributed OS, µKernel based („Nucleus“) � see next Page

• Idris (UNIX), POSIX compatible, User-IF running on one CPU only,
distributed Communication Kernels for Message Passing

• Trollius (UNIX), node based Kernel (same on each CPU), Lib. for Message
Passing

• TINIX

• Virtuoso (UNIX), µKernel based (Nano-Kernel: Processes & Channels),
available for different Hardware Platforms: T8/T9, TMS320C30, MIPS,
68030, … x86

4. Outlook
OS: Helios

ParHelion GmbH:

• Helios (UNIX), distributed OS, µKernel based („Nucleus“), Client-Server
Model, Message Passing, all resources are named Objects, e.g. Task
Moving possible (secure autentication),

Nucleus consists of 4 components:

– Kernel (Message Passing, Memory Mgmt),
– System Lib (Sys Calls),

– Loader (Code & Data Mgmt),

– Processor Mngr (Task & I/O Mgmt)
• Memory requirements for µKernel ~ 1MB RAM, 4MB TRAM recommended.

4. Outlook
Transputer Networks

IMSC004

(1988)

CrossBar LinkSwitch
for 32x32 Channels

Transputer Grid … Router Network

4.Outlook
Standard Boards

IMB-PC Development & Accellerator Boards (ISA):

• B004 (1985) T414-15, 2MB RAM

• B008 (1987): up to 10x TRAM,

VME Development Boards:

• B011 VME Master (1st Gen.)
• B016 VME Master (2nd Gen.)

• B014: up to 8x TRAM slave board

